
___ USAISEC '
SUS Army Information Systems Engineering Command
Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

COMMUNICATIONS, AND COMPUTER SCIENCES

AD-A268 57611M1I Hi 1111111111111111111111I lii II~

System Re-engineering Project
Executive Summary

(ASQB-GI-92-003)

NOVEMBER 1991

.•• DTIC,
SAUG 2 5 1993 J

AIRMICS
115 O'Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800

93-19673
SS 24 t01Q8 Imllllllll

"UNCLASSIFIED
•FC1TRTY •,I.A•tCATlON tOF TUin PArC.1

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0D 0.o-188
TExp. Date: Jun 30, 1986

Ia. REPORT SECURITY CLASSIFICATION 1h RESTRICTIVE MARKINGS

LNCLASSIFIED NONE
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT

N/A
2b. DECLASSIFICATION I DOUWNGRADING SCHEDULE N/A

N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

ASQB-GI-92-003 N/A

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable)

AIRMICS ASQB-GI N/A

5c. ADDRESS (City, State. and ZIP Code) 7b. ADDRESS (City, State. and Zip Code)

115 O'Keefe Bldg.,
Georgia Institute of Technology N/A

. Atlanta- GA 30332O-0800
8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable)

AIRMICS ASQB-GI
8c. ADDRESS (City. State, and ZIP Code) 1 lITmRCF OP FUINDING NUhIMBRS115 O'Keefe Bldg., PROGRAM PROJECT TASK WORK UNIT

Georgia Institute of Technology ELEMENT NO. NO. NO, ACCESSION NO.

Atlanta, GA 30332-0800 62783A DY10 02-04
11. TITLE (Include Security Classification)

System Re-engineering Project Executive Summary (UNCLASSIFIED)

12. PERSONAL AUTHOR(S)

Reginald L. Hobbs; John Mitchell; Glenn Racine

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month. Day) 15. PAGE COUNT

1991 November 25 8
FROM - TO

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB.GROUP_ I Computer-Aided Software Engineering (CASE); Distrib-
uted Software;Ada; COBOL;Systems Analysis, Systems
Design, Life Cycle Development;Functional Decomposi-
tion; Object-Oriented Design

19. ABSTRACT (Continue on reverse if necessary and identity by block number)

The purpose of this paper is to describe the system re-engineering project conducted by the Army Institute for

Research in Management Information, Communications, and Computer Sciences (AIRMICS) and the Information

Systems Software Center, Software Development Center - Atlanta (SDC-A). The project was concerned with the

analysis and re-engineering of a Standard Army Management Information System (STAMIS) application. This project

involved reverse engineering, evaluation of structured design and object-oriented design, and re-implementation of

the system in Ada. This executive summary presents the approach to re-engineering the system, the lessons learned
while going through the process, and issues to be considered in future tasks of this nature.

20. DISTRIBUTION / AVAILABILUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

El UNCLASSIFIED I UNUMITED [] SAME AS RPT. [] DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Reginald L. Hobbs (404) 894-3110 ASQB-GI
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SEsCmrIY CLASIPIICATION OF THIS PA E

All other editions are obsolete UNCLASSIFIED

This research was performed as an in-house project at the Army Institute for Research in
Management Information, Communications, and Computer Sciences (AIRMICS) in
conjunction with personnel from the Software Development Center-Atlanta (SDC-A). The
project was concerned with the analysis and re-engineering of a Standard Army Management
Information System (STAMIS) application. The objectives of the project were to assess the
use of CASE tools, evaluate object-oriented design versus functional decomposition,
re-implement a system in Ada, determine the training requirements for COBOL software
engineers, and compare the old and new systems. This executive summary is not to be
construed as an official Army position, unless so designated by other authorized documents.
Material included herein is approved for public release, distribution unlimited. Not
protected by copyright laws.

For more detailed information on the project, refer to Ada Transition Research Project (Phase
1) (ASQB-GI-91-005) and Ada Transition Research Project (Phase 11) (ASQB-GI-92-004).

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

s/ s/
Glenn E. Racine John R. Mitchell
Chief Director Ao1ee0Solon F
CISD AIRMICS SrrIs RI e

DTIC TAB
Unannounced

iyric QUA - N T•D 3 JustIficatlon

By-
Ditrtbutt~on/

Availability Codesl
I Avail and/or

Diat Special

SYSTEM RE-ENGINEERING PROJECT

U. S. Army Institute for Research in Management Information, Communications, and Computer
Sciences (AIRMICS)ISoftware Development Center-Atlanta(SDC-A)

1-1. ABSTRACT

The purpose of this paper is to describe the system re-engineering project conducted by

the Army Institute for Research in Management Information, Communications, and

Computer Sciences (AIRMICS) and the Information Systems Software Center, Software

Development Center - Atlanta (SDC-A). The project was concerned with the analysis

and re-engineering of a Standard Army Managzment Information System (STAMIS)

application. This project involved reverse engineering, evaluation of structured design and

object-oriented design, and re-implementation of the system in Ada. This paper will

present our approach to re-engineering the system, the lessons learned while going

through the process, and issues to be considered in future tasks of this nature.

1-2. BACKGROUND

The US Army Information Systems Engineering Command (ISEC) maintains over one

hundred STAMIS applications in the major functional areas of logistics, personnel,

finance, and communications. Most of these systems are written in COBOL, are batch

oriented, and have been operational for more than twenty years. Maintenance of these

systems is costly and time consuming primarily due to the deterioration of design

structure associated with many years of maintenance activity.

AIRMICS and the Software Development Center-Atlanta (SDC-A) began this project to

examine techniques for modernizing old COBOL applications to reduce the maintenance

effort required and to incorporate sound software engineering principles. We refer to

this effort as system re-engineering since it encompassed reverse engineering to

document the functional requirements, redesign to improve the structure of the system,

and re-implementation to code the new system in Ada.

1-3. OBJECTIVES

The objectives of the project were to assess the use of CASE tools, evaluate

object-oriented design versus functional decomposition, re-implement the system in Ada,

determine the training requirements for COBOL software engineers, and compare the

old and new systems.

1-4. APPROACH

The following sections describe the re-engineering approach we used as a 7-step process.

The 7 steps are: 1) Application Selection, 2) Re-engineering Tool Support, 3) Reverse

Engineering, 4) System Redesign, 5) Re-implementation, 6) Test and Evaluation, and 7)

Installation.

1-4.1. APPLICATION SELECTION

AIRMICS, in conjunction with SDC-A, selected the Installation Materiel Condition

Status Reporting System (IMCSRS) to re-engineer and redesign for this effort. IMCSRS

is an operational STAMIS, written in COBOL, consisting of 10,000 lines of code in 15

programs. It had been maintained as a STAMIS application for 20 years and was being

used by over 40 Army installations. We chose this system because it was representative of

the typical STAMIS application (i.e. batch-oriented, report generation, COBOL source

code, etc.), but was much smaller than average in size.

Selecting a system that was not extremely complex, involved few interfaces, and had a

reasonable number of lines of code, allowed us to complete the project using in-house

personnel and provided a manageable case study for this proof-of-principle effort. One

of the questions that remains concerns the repeatability and scalability of our results. We

intend to re-engineer another system to determine if the methods and techniques we

utilized translate to larger systems.

There is a need for a methodical, step-by-step procedure that can evaluate the potential

benefits of re-engineering based on the characteristics of an application. In a future task,

we plan to look into methods for determining when and under what circumstances

systems should be re-engineered. These methods will develop quantifiable measures for

projecting the cost benefit of re-engineering systems in terms of the impact on the

business practices of an organization.

1-4.2. RE-ENGINEERING TOOL SUPPORT

The next major step involved defining the software development environment. The

CASE tool selection process was accomplished over a 3-month period. AIRMICS

performed a technical evaluation of commercial CASE products that support a structured

design methodology, an object-oriented design methodology, and would run on our

current UNIX-based SUN workstations.

2

The CASE tool suite called Teamwork , by Cadre Technologies, was selected for the

redesign. The specific tools chosen included utilities for performing structured analysis,

structured design, and the creation of Ada structure graphs. These tools were selected
primarily because they provide support for both object-oriented and functional

decomposition design methods, generate template Ada code, are of relatively low cost,

and were consistent with our existing workstation environment. We were not evaluating

the CASE tools to determine the "best" tool for the project, rather we were interested in
finding a tool that met our requirements and constraints. The CADRE tools purchased

included a 2-user network license, project environment software, the structured design

tools, and an Ada source builder.

Having CASE tools with a consistent look and feel helped decrease the amount of

training required to use the software. The graphical user interface consisted of a

mouse-driven, multi-window environment containing pop-up and pull-down menus.

The amount of formal training on the hardware/software tools for the developers and

programmers included: Teamwork CASE tools (10 days) and Ada programming language

(8 weeks). Informal in-house training included: Sun Workstation (2 days), UNIX

Operating system (3 days), Functional Decomposition Methodology (20 days),

Object-Oriented Design Methodology (20 days). Most CASE tools employ some type of

system design/development methodology that the CASE vendor assumes the user

understands. The formal training done through Cadre focused on the mechanics of using

the CASE tool, not the underlying methodology.

Our next re-engineering task should select CASE tools that fully integrate all phases of

the life cycle. Part of the difficulty in the software development was transitioning from

one graphical representation to the next, while taking advantage of information already

learned. Many of the transformations (particularly from the structured analysis to the

structure design phase) were still largely a manual process. There was also a lack of

CASE tool support to automate the reverse engineering process.

1-4.3. REVERSE ENGINEERING

Reverse engineering a system means recognizing design decisions that produced the

original software and constructing a representation of these decisions to define its

functional requirements. The objective of the reverse engineering phase of the project

was to produce a functional description of the existing system from the COBOL source

code and available documentation.

3

Certain stages within this analysis were diagrammed using a CASE tool (IDE's Software

Through Pictures) for clarification of data structure and flow, but for the most part this
was a manual process. The reverse engineering was completed in 3 man-months by 2
researchers and 1 administrative support clerk. The result of reverse engineering

IMCSRS was a functional description document describing the existing system

functionality.

One problem that became apparent during the reverse engineering process was that

going into great detail analyzing the existing code had to be avoided to prevent
re-implementing design errors from the original system. Another difficulty arose in that

much of the initial process was done without the presence of a functional user. When the
functions appeared to be complete, they were reviewed by a functional area specialist for

validity. We had to redo sections of the functional description that came out of the

reverse engineering study in order to accurately reflect the desired systems capabilities.

As a function was reviewed and completed, it was added to the new functional

description. If it was not complete, the functional area specialist further defined the

actions necessary to complete the functional requirement document.

Subsequent re-engineering tasks of this type should involve the functional users at all

stages of the life cycle. It is through this involvement that the functionality of the existing
system and the business practices are improved. Using rapid prototyping tools,

particularly to simulate the user interface for a system, will further allow for the

validation of the functional description prior to redesign.

1-4.4. SYSTEM REDESIGN

The objective of the design phase af the project was to produce a detailed design of the

system for implementation in Ada. Using the newly developed functional description as a
baseline, the system was redesigned by two separate teams. One team concentrated on

redesigning the STAMIS using a functional decomposition methodology involving

structured analysis and design techniques. The second project team based their redesign

on object-oriented design (OOD) techniques. Each development team was assigned a
specific workstation to build the designs, but the CASE tool maintained all the models

within a single library database networked between the two workstations.

Both design efforts were done over a two month period. After comparing the two designs

to assess their respective advantages/disadvantages and discussing the lessons learned

applying the methodologies, the OOD was selected to implement the STAMIS. The

4

OOD was chosen because it was simpler to understand, appeared to be easier to
implement and promised reduced maintenance effort during the life-cycle.

The Teamwork CASE tool was used to generate Ada Structure Graphs (ASGs) from the
OOD. These are graphical representations of Ada constructs that give a high level view of
the system. All design specifications (including the most detailed interfaces) were derived
from these graphs.

The hardest part of the OOD task was identifying the objects within the system. OOD is
a paradigm shift from traditional system development. The programmers/developers who
had a background in problem-solving techniques and structured design methodologies
experienced an easier transition to the OOD way of viewing systems. The design
document was so easily understood that it was used as a basis for final validation of the
functional requirements by the proponent agency (PA). Enhancements were added to the
functional requirements during the design phase based on discussions with the functional
users. An interactive user interface, automatic data validation and error checking, and
context-sensitive help information were among the new requirements added to the
system. After viewing the new system design, the PA submitted an Engineering Change
Proposal (ECP) to implement the new design as a production system and to downsize the
system to run on existing PC's, replacing the old mainframe version.

Further work is needed to define rules or procedures to aid designers in more easily
identifying the objects within a system during the initial steps in object-oriented design.

1-4.5. RE-IMPLEMENTATION

The design documents, including the ASGs, the functional description, and the Ada
template code, were given to the programmers at SDC-A to implement. The system as it
was designed consisted of 10 major components, each corresponding to an Ada package.
The programming was accomplished by 2 analysts in 4 1/2 months with 7 man-months of
effort. Both programmers had attended an 8-week Ada training course, but had no prior
experience building systems using Ada. One of the programmers had maintained the
original version of the system and had an extensive background in COBOL, but no
exposure to OOD. The other programmer was knowledgeable in problem-solving and
structured methodologies.

The coding was done using the Ada library procedures available with the Alsys Ada
compiler and locally written Ada packages. They also took advantage of the reusable

5

components available through the Army's RAPID (Reusable Ada Products for
Information Systems Development) library to handle some low-level I/O routines.
Reusable, generic modules that were developed by SDC-A programmers have been

submitted to the RAPID center as candidates for the reuse library. The package bodies
furnished by the CASE tool described all the interfaces and data necessary for each
component, allowing a great deal of programmer flexibility in coding the procedures.
The programmers only had to implement the algorithms to perform the functions based
on the predefined specifications. The final system consisted of 12,000 lines of Ada code.

1-4.6. TEST AND EVALUATION

A system test plan was developed to establish a framework for system validation and

acceptance as an operational STAMIS. The test plan was defined to demonstrate the
operational effectiveness against the performance and functional requirements as outlined
in DoD-STD-7935A,"Automated Information Systems Documentation Standards".

SDC-A conducted an in-house Software Qualification Test (SQT) in May of 1991. An

Army installation was chosen for initial live-site testing in May 1991. The results from
this testing were used to correct the few problems that were found. The formal software
acceptance test (SAT) was conducted in June 1991. There were no errors uncovered

during the acceptance testing and the system was approved for release.

1-4.7. INSTALLATION

System installation documentation and support utilities were written by the programmers

during the implementatioii phase. Because the system was to run on microcomputers,
the entire system, including documentation and source code, was sent to the 40 sites
through the mail. Installing the system was very easy to accomplish and required a
minimal amount of support from the developers. As of August 1991, the new STAMIS

became an operational system at over 40 active and reserve Army installations. During
the three months the system has been operational, there have been no errors reported.

The system has met with positive reactions from the functional user community. The
decrease in overall turnaround time at each installation has been significant. One
installation has reported that what had taken them up to 2 1/2 weeks to do with the old

system, now can be completed in 35 minutes. Other sites reported similar reductions in
turnaround time and an overall improvement in their business practices.

6

1-5. CONCLUSION

The re-engineering methodology used in this project resulted in a well-designed system

that has improved the operations of a particular area for a large number of Army

installations. Preliminary data from this re-engineering effort show the cost of

re-engineering to be about $125,000. This includes tools, workstations, training, and

manpower required to produce the new system.

Initial studies have shown that, as a result of improving the business practices, it is

estimated that each installation would save approximately $80,000 over an assumed 10

year life of the system. Multiplied by 40 installations, the cost savings would be over

$3,000,000.

Additional savings in development center system maintenance are anticipated due to

improvements in the system design structure, tLie of CASE tools, and improved reliability.

One of the questions that arises is whether the success of this effort is repeatable. We

plan to re-engineer a larger STAMIS in order to assess the repeatability and scalability of

these methods. We are also concerned with the evaluation of alternative designs. We

chose the object-oriented design because it appeared to be the best. We are now

applying software design metrics against the old and new systems to serve as a

quantifiable basis of design comparison.

Finally, we are performing a study to develop cost/benefit analysis methods to use as a

guide for determining which applications should be selected for future re-engineering

activities based on predicted cost savings.

During our next re-engineering task, we will focus more effort on capturing metric data

as we go through the process. For example, we will conduct function point analysis,

define input/output primitives, track lines-of-code produced by man-hour, and apply

other software productivity metrics and complexity metrics to enable us to better asses

the cost-benefit of re-engineering existing applications.

7

